Randomized approximation of Sobolev embeddings, III
نویسنده
چکیده
We continue the study of randomized approximation of embeddings between Sobolev spaces on the basis of function values. The source space is a Sobolev space with nonnegative smoothness order, the target space has negative smoothness order. The optimal order of approximation (in some cases only up to logarithmic factors) is determined. Extensions to Besov and Bessel potential spaces are given and a recently posed problem by Novak and Woźniakowski is partially solved. The results are applied to the complexity analysis of weak solution of elliptic PDE.
منابع مشابه
Randomized approximation of Sobolev embeddings, II
We study the approximation of Sobolev embeddings by linear randomized algorithms based on function values. Both the source and the target space are Sobolev spaces of non-negative smoothness order, defined on a bounded Lipschitz domain. The optimal order of convergence is determined. We also study the deterministic setting. Using interpolation, we extend the results to other classes of function ...
متن کاملOn approximation numbers of Sobolev embeddings of weighted function spaces
We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.
متن کاملQuantum approximation II. Sobolev embeddings
A basic problem of approximation theory, the approximation of functions from the Sobolev space W r p ([0, 1] ) in the norm of Lq([0, 1] ), is considered from the point of view of quantum computation. We determine the quantum query complexity of this problem (up to logarithmic factors). It turns out that in certain regions of the domain of parameters p, q, r, d quantum computation can reach a sp...
متن کاملOn the Approximation Numbers of Sobolev Embeddings on Singular Domains and Trees
Upper and lower bounds are determined for a function which counts the approximation numbers of the Sobolev embedding W 1,p( )/C ↪→ L p( )/C, for a wide class of domains of finite volume in Rn and 1 < p < ∞. Results on the distribution of the eigenvalues of the Neumann Laplacian in L2( ) are special consequences. We dedicate this paper to Jerry Goldstein on his 60th birthday.
متن کاملOptimal Domain Spaces in Orlicz-sobolev Embeddings
We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Complexity
دوره 25 شماره
صفحات -
تاریخ انتشار 2009